SOLUTION: The sum of 3 times a number and 4 times another number is 43. Five times the first number is 3 less than four times the opposite of the second number. Find the numbers. Choose one

Algebra ->  Coordinate Systems and Linear Equations  -> Linear Equations and Systems Word Problems -> SOLUTION: The sum of 3 times a number and 4 times another number is 43. Five times the first number is 3 less than four times the opposite of the second number. Find the numbers. Choose one      Log On


   



Question 572852: The sum of 3 times a number and 4 times another number is 43. Five times the first number is 3 less than four times the opposite of the second number. Find the numbers.
Choose one answer.
a. -20 and 29
b. -23 and 28
c. 23 and -28
d. 20 and -29

Answer by Maths68(1474) About Me  (Show Source):
You can put this solution on YOUR website!
Let
1st number = x
2nd number = y
The sum of 3 times a number and 4 times another number is 43
3x+4y=43.................(1)
Five times the first number is 3 less than four times the opposite of the second number
5x=4(-y)-3
5x=-4y-3
5x+4y=-3.................(2)
Subtract (1) from (2)
5x+4y=-3
-3x-4y=-43
-------------------
2x=-46
2x/2=-46/2
x=-23
Put the value of x in (1)
3x+4y=43
3(-23)+4y=43
-69+4y=43
4y=43+69
4y=112
4y/4=112/4
y=28
Numbers are -23 and 28