Question 572645:  Use the Method of Finite Differences to find a function for the following sequences. 2.5, 6, 13.5, 25 
 Answer by Edwin McCravy(20064)      (Show Source): 
You can  put this solution on YOUR website! 
n   tn    D1  D2
---------------   
1   2.5  3.5  4
2   6.0  7.5  4
3  13.5 11.5
4  25.0
Since it took 2 differences to get to a column that only
had the same number in it, we can assume a 2nd degree
polynomial function for tn of the form:
tn =  An² + Bn + C
Substituting
t1 =  A(1)² + B(1) + C
2.5 = A(1) + B(1) + C
2.5 = A + B + C
t2 =  A(2)² + B(2) + C
6.0 = A(4) + B(2) + C
6.0 = 4A + 2B + C
t3 =  A(3)² + B(3) + C
13.5 = A(9) + B(3) + C
13.5 = 9A + 3B + C
So we have this system
  2.5 = A +  B + C
 6.0 = 4A + 2B + C
13.5 = 9A + 3B + C
or maybe you would write it this way:
 A +  B + C =  2.5
4A + 2B + C =  6.0
9A + 3B + C = 13.5
Solve that system of 3 equations in three
unknowns and get:
A = 2, B = -2.5, C = 3
So the function 
tn =  An² + Bn + C
becomes
tn =  2n² - 2.5n + 3
Edwin  
  | 
 
  
 
 |   
 
 |