SOLUTION: When Bert and Ernie merged their automobile dealerships, Bert had 10 more cars than Ernie. While 36% of Ernie's stock consisted of new cars, only 25% of Bert's stock consisted of

Algebra ->  Customizable Word Problem Solvers  -> Misc -> SOLUTION: When Bert and Ernie merged their automobile dealerships, Bert had 10 more cars than Ernie. While 36% of Ernie's stock consisted of new cars, only 25% of Bert's stock consisted of       Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 568285: When Bert and Ernie merged their automobile dealerships, Bert had 10 more cars than Ernie. While 36% of Ernie's stock consisted of new cars, only 25% of Bert's stock consisted of new cars. If they had 33 new cars on the lot after the merger, then how many cars did each one have before the merger?
Answer by josmiceli(19441) About Me  (Show Source):
You can put this solution on YOUR website!
Let +b+ = number of cars Bert had
Let +e+ = number of cars Ernie had
given:
(1) +b+=+e+%2B+10+
(2) +.25b+%2B+.36e+=+33+
---------------------
(2) +25b+%2B+36e+=+3300+
Substitute (1) into (2)
(2) +25%2A%28+e+%2B+10+%29+%2B+36e+=+3300+
(2) +25e+%2B+250+%2B+36e+=+3300+
(2) +61e+=+3050+
(2) +e+=+50+
and
(1) +b+=+e+%2B+10+
(1) +b+=+50+%2B+10+
(1) +b+=+60+
Bert had 60 cars
Ernie had 50 cars
check answer:
(2) +.25%2A60+%2B+.36%2A50+=+33+
(2) +15+%2B+18+=+33+
(2) +33+=+33+
OK