Write cos(q) in terms of cot(q) cot(q) = Multiply both sides by sin(q) cot(q)sin(q) = cos(q) Use the fact that cosēq + sinēq = 1 sinēq = 1 - cosēq _________ sin(q) = ąÖ1 - cosēq _________ cot(q)[ąÖ1 - cosēq] = cos(q) Square both sides: cotēq[1 - cosēq] = cosēq cotēq - cotēq·cosēq = cosēq cotēq = cosēq + cotēq·cosēq cotēq = cosēq[1 + cotēq] = cosēq = cos(q) Edwin