SOLUTION: Find all values of x in the interval [0, 2π] that satisfy the equation. 16 + 8 cos(2x) = 24 cos(x)

Algebra ->  Trigonometry-basics -> SOLUTION: Find all values of x in the interval [0, 2π] that satisfy the equation. 16 + 8 cos(2x) = 24 cos(x)      Log On


   



Question 562193: Find all values of x in the interval [0, 2π] that satisfy the equation.
16 + 8 cos(2x) = 24 cos(x)

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
Find all values of x in the interval [0, 2π] that satisfy the equation.
16 + 8 cos(2x) = 24 cos(x)
divide by 8
2 + cos(2x) = 3 cos(x)
2 + cos^2(x)-sin^2(x) = 3 cos(x)
2 + cos^2(x)-1+cos^2(x) = 3 cos(x)
2cos^2(x)-3cos(x)+1=0
(2cos(x)-1)(cos(x)-1)=0
..
2cosx-1)=0
cosx=1/2
x=π/3 and 5π/3 (quadrants I and IV where cos>0)
or
(cos(x)-1)=0
cosx=1
x=0