SOLUTION: xsquared+x-6 how do you get the trinomial completely and need this very soon. Thank You

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: xsquared+x-6 how do you get the trinomial completely and need this very soon. Thank You      Log On


   



Question 555668: xsquared+x-6 how do you get the trinomial completely and need this very soon. Thank You
Answer by KMST(5328) About Me  (Show Source):
You can put this solution on YOUR website!
Do you mean "How do you complete the square?"
I do not really know what you meant to ask, but I am going to try to answer, anyway.
x%5E2%2Bx-6 has 3 terms, so it is a trinomial.
It's degree is 2, so it can be called a quadratic trinomial, or a quadratic polynomial.
f%28x%29=x%5E2%2Bx-6 would be called a quadratic function, and
x%5E2%2Bx-6=0 would be called a quadratic equation.
The sum of terms x%5E2%2Bx can be considered to be part of the square
%28x%2B1%2F2%29%5E2=x%5E2%2Bx%2B1%2F4
That trick is often called "completing the square."
That is useful for finding the axis of symmetry and vertex of the curve (called a parabola) described by f%28x%29=x%5E2%2Bx-6.
It is also useful for solving quadratic equations.
f%28x%29=x%5E2%2Bx-6=x%5E2%2Bx%2B1%2F4-1%2F4-6=%28x%2B1%2F2%29%5E2-25%2F4
That tells you that the function has a minimum (and the parabola has a vertex) at
x=-1%2F2 with f%28-1%2F2%29=-25%2F4
Similarly x%5E2%2Bx-6=0 can be written as
%28x%2B1%2F2%29%5E2-25%2F4=0 or %28x%2B1%2F2%29%5E2=25%2F4 and solved to get
x=-1%2F2+%2B-+sqrt%2825%2F4%29=-1%2F2+%2B-+5%2F2 , which gives you x=2 and x=-3 as solutions.