SOLUTION: ((x+8)^2)/(49)+((y+7)^2)/(9)=1

Algebra ->  Quadratic-relations-and-conic-sections -> SOLUTION: ((x+8)^2)/(49)+((y+7)^2)/(9)=1      Log On


   



Question 555631: ((x+8)^2)/(49)+((y+7)^2)/(9)=1
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
((x+8)^2)/(49)+((y+7)^2)/(9)=1
This is an equation of an ellipse with horizontal major axis of the standard form:
(x-h)^2/a^2+(y-k)^2)/b^2=1, a>b, (h,k) being the (x,y) coordinates of the center.
For given equation:
center: (-8,-7)
a^2=49
a=√49=7
vertices: (-8±a,-7)=(-8±7,-7)=(-15,-7) and (-1,-7)
b^2=9
b=√9=3
co vertices: (-8,-7±b)=(-8,-7±3)=(-8,-10) and (-8,-4)
You now have enough information to graph the ellipse