sin[(n+1)A]sin[(n+2)A] + cos[(n+1)A]cos[(n+2)A] = cosA
Use the commutative principles of multiplication and addition
to rearrange the left side as
cos[(n+2)A]cos[(n+1)A] + sin[(n+2)A]sin[(n+1)A]
The left side is the right side of the identity
with and
So the left side becomes:
cos[(n+2)A - (n+1)A]
cos[nA + 2A - nA - A]
cos(A)
Edwin