Question 545288: log3[log2(4x-6)]=log5(25)
Answer by lwsshak3(11628) (Show Source):
You can put this solution on YOUR website! log3[log2(4x-6)]=log5(25)
log5(25)=2
log2(4x-6)
change to base 3
log3[(4x-6)/log3(2)]
..
log3[log2(4x-6)]=log5(25)
log3[log3(4x-6)]/[log3(2)]=2
log3[(log3(4x-6)]=2log3(2)=log3(2^2)=log3(4)
log3[(log3(4x-6)]=log3(4)
log3(4x-6)=4
3^4=4x-6=81
4x=87
x=87/4
|
|
|