SOLUTION: Using a double-angle or half-angle formula to simplify the given expressions. a) IF cos^2(22 degrees)-sin^2(22 degrees)=cos(A degrees), then A= b) IF cos^2(2x)-sin^2(2x)

Algebra ->  Trigonometry-basics -> SOLUTION: Using a double-angle or half-angle formula to simplify the given expressions. a) IF cos^2(22 degrees)-sin^2(22 degrees)=cos(A degrees), then A= b) IF cos^2(2x)-sin^2(2x)      Log On


   



Question 522880: Using a double-angle or half-angle formula to simplify the given expressions.
a) IF cos^2(22 degrees)-sin^2(22 degrees)=cos(A degrees), then
A=
b) IF cos^2(2x)-sin^2(2x)=cos(B), then

B=

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
Using a double-angle or half-angle formula to simplify the given expressions.
a) IF cos^2(22 degrees)-sin^2(22 degrees)=cos(A degrees), then
using identity: cos 2s=cos^2s-sin^2s
cos^2(22 degrees)-sin^2(22 degrees)=cos 44º
A= 44º
b) IF cos^2(2x)-sin^2(2x)=cos(B), then
Using same identity:
cos^2(2x)-sin^2(2x)=cos 4x
B=4x