|  | 
| 
 
 
| Question 51312:  For the functions f(x) = 4x + 7 and g(x) = -9x + 11,
 find f(g(0)).
 For the functions f(x) = 3x2 - 7
 and g(x) = -3x2 + 4,
 find f(g(2)).
 For the functions f(x) = 3x2 - 7
 and g(x) = -3x2 + 8,
 find g(f((-4)).
 For the functions f(x) = 3x2 - 8
 and g(x) = -7x2 + 5,
 find g(f((-4)).
 
 
 Answer by THANApHD(104)
      (Show Source): 
You can put this solution on YOUR website! ah composite functions! problems! For the functions f(x) = 4x + 7 and g(x) = -9x + 11,
 find f(g(0)).
 f(g(x))= f(-9x+11) = 4(-9x+11)+7
 = 4(-9*0+11)+7   (subtitute the values for ,0)
 = 4*11+7
 = 44+7
 =51
 
 
 
 For the functions f(x) = 3x2 - 7     ( actually wat U mean by 3x2,U mean 3(x^2) or (3x)^2)---and g(x) = -3x2 + 4,
 find f(g(2)).
 
 f(g(x))= f(-3x^2+4) = 3(-3x^2+4)^2-7
 substiude x to 2=>     = 3(-3(2^2)+4)^2-7
 =3*(-8)^2-7
 =3*64-7
 =192-7
 =  185
 
 
 For the functions f(x) = 3x2 - 7
 and g(x) = -3x2 + 8,
 find g(f((-4)).
 so f(g(x)) = 3{[-3(x^2)+8]^2}-7
 x=(-)4=>  3(-40)^2-7
 = 3*1600-7
 =4800-7
 = 4793
 
 For the functions f(x) = 3x2 - 8
 and g(x) = -7x2 + 5,
 find g(f((-4)).
 
 so f(g(x)) = 3{[-7(x^2)+5]^2}-8
 x=(-4)=> 3{[-7((-4)^2)+5]^2}-8
 
 = ???        You try it as the above
 
 | 
  
 | 
 |  |  |