1 + (1+2) + (1+2+3) + (1+2+3+4) + ··· + (1+2+···+100)
I'll get one more term:
1 + (1+2) + (1+2+3) + (1+2+3+4) + (1+2+3+4+5) + ··· + (1+2+···+100)
1 + 3 + 6 + 10 + 15 + ··· + (1+2+···+100)
n an Sn d1 d2 d3
1 1 1 1 2 1
2 3 4 3 3
3 6 10 6
4 10 20
5 15
It takes three differences to get a constant column, so
we will assume a quadratic sum formula Sn
Sn = An³ + Bn² + Cn + D
S1 = A(1)³ + B(1)² + Cn + D
1 = A + B + C + D
S2 = A(2)³ + B(2)² + C(2) + D
4 = A(8) + B(4) + 2C + D
4 = 8A + 4B + 2C + D
S3 = A(3)³ + B(3)² + C(3) + D
10 = A(27) + 9B + 3C + D
10 = 27A + 9B + 3C + D
S4 = A(4)³ + B(4)² + C(4) + D
20 = A(64) + 16B + 4C + D
20 = 64A + 16B + 4C + D
So we have the system of equations:
1 = A + B + C + D
4 = 8A + 4B + 2C + D
10 = 27A + 9B + 3C + D
20 = 64A + 16B + 4C + D
or in standard order:
A + B + C + D = 1
8A + 4B + 2C + D = 4
27A + 9B + 3C + D = 10
64A + 16B + 4C + D = 20
Solve that system and get
A =
, B =
, C =
, D = 0
Then this
Sn = An³ + Bn² + Cn + D
becomes
Sn =
n³ +
n² +
n + D
Sn =
n³ +
n² +
n + D
Sn =
(n³+3n²+2n)
Sn =
n(n²+3n+2)
Sn =
(n+1)(n+2)
That's the general formula, so the sum of the first 100 terms is
found by substituting n = 100:
S100 =
(100+1)(100+2)
S100 =
(101)(102)
S100 = 171700
Edwin