| 
 
 
| Question 509159:  y^2-9x^2+2y+10=0 sketch the graoh,find the center,vertices,foci,eccentricity,asymptots.
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! y^2-9x^2+2y+10=0 sketch the graph,find the center,vertices,foci,eccentricity,asymptotes. **
 complete the square
 (y^2+2y+1)-9x^2=-10+1=-9
 (y+1)^2-9x^2=-9
 divide by -9
 -(y+1)^2/9+x^2=1
 x^2-(y+1)^2/9=1
 This an equation of a hyperbola with horizontal transverse axis of the standard form:
 (x-h)^2/a^2-(y-k)^2/b^2=1
 For given equation:
 Center: (0,-1)
 a^2=1
 a=1
 vertices: (0±a,-1)=(0±1,-1)=(1,-1) and (-1,-1)
 ..
 b^2=9
 b=3
 ..
 c^2=a^2+b^2=9+1=10
 c=√10=3.16..
 Foci: (0±c,-1)=(0±3.16,-1)=(3.16,-1) and (-3.16,-1)
 ..
 Eccentricity: c/a=√10/1=√10=3.16
 ..
 Asymptotes:
 slope=±b/a=±3/1=±3
 Equation: y=mx+b
 For slope=3
 y=3x+b
 find b using coordinates of center (0,-1)
 -1=3*0+b
 b=-1
 equation of asymptote: y=3x-1
 ..
 For slope=-3
 y=-3x+b
 find b using coordinates of center (0,-1)
 -1=3*0+b
 b=-1
 equation of asymptote: y=-3x-1
 ans:
 Center: (0,-1)
 Vertices:(1,-1) and (-1,-1)
 Foci: (3.16,-1) and (-3.16,-1)
 Eccentricity: 3.16
 Equation of asymptotes: y=3x-1 and y=-3x-1
 ..
 see graph below:
 ..
 y=±(9x^2-9)^.5-1
 
  
 | 
  
 | 
 |