SOLUTION: solve for x. log (base 10)(x+3)=log(base 10) (2x) + log (base 10) (5)

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: solve for x. log (base 10)(x+3)=log(base 10) (2x) + log (base 10) (5)      Log On


   



Question 507382: solve for x.
log (base 10)(x+3)=log(base 10) (2x) + log (base 10) (5)

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
solve for x.
log (base 10)(x+3)=log(base 10) (2x) + log (base 10) (5)
**
log (base 10)(x+3)-log(base 10) (2x) - log (base 10) (5)=0
log (base 10)(x+3)-[log(base 10) (2x) + log (base 10) (5)]=0
place under single log
log[(x+3)/(2x*5)]=0
log(x+3)/10x=0
Convert to exponential form: base(10) raised to log of number(0)=number((x+3)/10x)
10^0=(x+3)/10x=1
10x=x+3
9x=3
x=1/3