| 
 
 
 
Question 491838:  graph the hyperbola and label the vertices, foci and asymptotes: 
(((y+2)^2)/25))-(((x+11)^2)/4)=1 
 Answer by lwsshak3(11628)      (Show Source): 
You can  put this solution on YOUR website! graph the hyperbola and label the vertices, foci and asymptotes: 
(((y+2)^2)/25))-(((x+11)^2)/4)=1 
** 
graph the hyperbola and label the vertices, foci and asymptotes: 
((y+2)^2)/25)-((x+11)^2)/4)=1 
This is a hyperbola with vertical transverse axis of the standard form:  
(y-k)^2/a^2-(x-h)^2/b^2=1, with (h,k) being the (x,y) coordinates of the center. 
.. 
From given data: 
Center: (-11,-2) 
a^2=25 
a=√25=5 
length of transverse axis=2a=10 
vertices: (end-points of transverse axis)=(-11,-2±a)=(-11,-2±5)=(-11,3) and (-11,-7) 
.. 
b^2=4 
b=√4=2 
.. 
c^2=a^2+b^2=25+4=29 
c=√29=5.39 
Foci: (-11,-2±c)=(-11,-2±√29)=(-11,-2±5.39)=(-11,3.39) and (-11,-7.39) 
.. 
Asymptotes are straight lines thru the center with equation of the standard form: y=mx+b, with m=slope and b=y-intercept. 
slope of asymptotes=±a/b=5/2 and -5/2 
Equations of asymptotes: 
y=mx+b 
using coordinates of center to find b 
-2=5/2*-11+b 
-2=-55/2+b 
-4=-55+2b 
2b=51 
b=51/2 
Equation: y=5x/2+51/2 
.. 
-2=-5/2*-11+b 
-2=55/2+b 
-4=55+2b 
2b=-59 
b=-59/2 
Equation: y=-5x/2-59/2 
Ans: 
Vertices:(-11,3) and (-11,-7) 
Foci: (-11,3.39) and (-11,-7.39) 
Equations of asymptotes:y=5x/2+51/2 and y=-5x/2-59/2 
.. 
see the graph below as a visual check on the answers above 
y=±(25+25(x+11)^2/4)^.5-2 
  
  | 
 
  
 
 |   
 
 |   
 |  |