You must make a chart for the sample space of all possible
dice throws:
Here is the sample space. It contains 64 possible outcomes:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)
(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)
(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)
You'll find that all throws with a given sum are on a diagonal.
-----------------------------------
a:P(4)
The throws with sum 4 are in red:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)
(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)
(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)
Therefore P(4) is 3 out of 64 or
-------------------------------------------------
b:P(6)
The throws with sum 6 are in red:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)
(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)
(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)
Therefore P(6) is 5 out of 64 or
-------------------------------------------------
The throws with sum 10 are in red:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)
(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)
(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)
Therefore P(10) is 7 out of 64 or
-------------------------------------------------
The throws with sum 11 are in red:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)
(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)
(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)
Therefore P(11) is 6 out of 64 or
which reduces to
-------------------------------------------------
The throws with sum 14 are in red:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)
(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)
(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)
Therefore P(14) is 3 out of 64 or
-------------------------------------------------
The throw with sum 16 is in red:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)
(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)
(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)
Therefore P(16) is 1 out of 64 or
-------------------------------------------------
Edwin