Question 48600:  Please can someone help me solve the following. I would really appreciate some help.
 
1)How many imaginary zeros does the funtion f(x) = 3x4 + 2x3 + 4x + 7 have? 
 a. 0 
 b. 2 or 0 
 c. 4 or 2 
 d. 4, 2, or 0 
2)Identify the real zeros for the function f(x) = x3 - 3x2 - 53x - 9.
 
3)Identify the real zeros to the nearest tenth for the function f(x) = x3 - 6x - 9. 
 a. 3.0 
 b. -.6, 1.4 
 c. .8, 2.0 
 d. -1.2, .4, 3.0
 
4)
 
Identify all zeros for the function f(x) = x3 - 6x2 + 10x - 8. 
 a. 1, 2, 4 
 b. 2, 2, 4 
 c. 4, 1 + i,1 - i 
 d. 4, 2 + i, 2 - i 
5)If f(x) = x2 and g(x) = x + 2, find f[g(x)] 
 a. x2 + 2 
 b. x2 + 4x + 4 
 c. x2 + x + 2 
 d. x2 - x + 2 
6)If f(x) = x3 + 4 and g(x) = x + 3, find [g • f](2) 
 a. 15 
 b. 12 
 c. 5 
 d. 129
 
7)Find the inverse of the function f(x) = 4x + 1. 
 a. f -1 (x) = x - 1/4 
 b. f -1 (x) = 1/4x - 1 
 c. f -1 (x) = 4x - 1 
 d. f -1 (x) = 1/4x - 1/4
 
8)Which of the following pairs of functions are inverse functions? 
 a. f(x) = 3x - 9, g(x) = -3x + 9 
 b. f(x) = 4 - x, g(x) = 4 + x 
 c. f(x) = x + 5, g(x) = x - 5 
 d. f(x) = x, g(x) = -x  
 Answer by stanbon(75887)      (Show Source): 
You can  put this solution on YOUR website! 1)How many imaginary zeros does the function f(x) = 3x^4 + 2x^3 + 4x + 7 have? 
f(x) has no changes of sign so has no real zeros. 
Therefore f(x) has 4 complex roots. They could be two complex with  
multiplicity two, so. 
c. 4 or 2 
-------------------------- 
2)Identify the real zeros for the function f(x) = x^3 - 3x^2 - 53x - 9. 
 Graphing you find a zero, x=9. 
 Using synthetic division the remaining factor is x^2+6x+1 
 Using the quadratic formula you find: 
x=[-6+-sqrt(36-4(1)(1))]/2=[-3+-4sqrt(2)]/2 = (-3/2)+-2sqrt2 
----------------------------------------------------- 
3)Identify the real zeros to the nearest tenth for the function  
f(x) = x^3 - 6x - 9. 
Graphing you find a zero, x=3 
Graphing you get one zero at x=3. 
Other factor is x^2+3x+3 
x=[-3+-sqrt(9-12)]/2 
x=[-3+-isqrt3]/2 
a. 3.0 
------------------------------------------------------- 
4)Identify all zeros for the function f(x) = x^3 - 6x^2 + 10x - 8. 
Graphing you find x=4 is a zero. 
The remaining factor is x^2-2x+2 
Zeros of that are x=[2+-sqrt(4-8)]/2= 1+-i 
c. 4, 1 + i,1 - i 
-------------------------------- 
5)If f(x) = x^2 and g(x) = x + 2, find f[g(x)] 
f(g(x))=f(x+2) = (x+2)^2 = x^2+4x+4 
b. x^2 + 4x + 4 
6)If f(x) = x^3 + 4 and g(x) = x + 3, find [g o f](2) 
g(f(2))= g(12)=15 
a. 15 
------------------------------------------------------ 
7)Find the inverse of the function f(x) = 4x + 1. 
Write y=4x+1 
Interchange x and y to get x=4y+1 
Solve for y: y=(x-1)/4 =(1/4)x-(1/4)  
d. f -1 (x) = 1/4x - 1/4  
-------------------------------------- 
8)Which of the following pairs of functions are inverse functions? 
f(g(x))=f(x-5)=x 
g(f(x))=g(x+5)=x 
Therefore the following are inverse to one another. 
c. f(x) = x + 5, g(x) = x - 5 
-------------------------------------- 
Cheers, 
Stan H.
 
 
  | 
 
  
 
 |   
 
 |