SOLUTION: I'm having alot of trouble understanding the process of solving a system of equations by subsitution vs elimination. Solve the system of equations by substitution. 2x + y

Algebra ->  Probability-and-statistics -> SOLUTION: I'm having alot of trouble understanding the process of solving a system of equations by subsitution vs elimination. Solve the system of equations by substitution. 2x + y       Log On


   



Question 478339: I'm having alot of trouble understanding the process of solving a system of equations by subsitution vs elimination.

Solve the system of equations by substitution.
2x + y = 9
x − 4y = 9

and
Solve the system of equations by elimination.
49x − 27y + 47 = 0
14x − 45y + 30 = 0
? I would so appreciate a detailed explanation of both processes.

Found 2 solutions by stanbon, THABANIG@YMAIL.COM:
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
Solve the system of equations by substitution.
2x + y = 9
x − 4y = 9
-----
Solve the 2nd equation for "x":
x = 4y+9
---
Substitute for "x" in the 1st equation
and solve for "y":
2(4y+9) + y = 9
8y+18+y = 9
9y = -9
y = -1
----
Now, solve for "x":
x = 4y+9
x = 4*-1+9
x = -4+9
x = 5
================================
and
Solve the system of equations by elimination.
49x − 27y + 47 = 0
14x − 45y + 30 = 0
----
Rearrange:
49x - 27y = -47
14x - 45y = -30
-------------
You have a choice of eliminating the x terms
or the y terms.
To eliminate the x terms:
Multiply thru 1st equation by 14
Multiply thru 2nd equation by 49
-------
14*49x - 14*27y = 14*-47
49*14x - 49*45y = 49*-30
------
Subtract the 2st equation from the 1nd and solve for "y":
1827y = 812
y = 4/9
--------------
Solve for "x" using any of the equations that relate x and y:
14x − 45y + 30 = 0
14x - 45(4/9) = -30
14x - 20 = -30
14x = -10
x = -5/7
--------------
Cheers,
Stan H.

Answer by THABANIG@YMAIL.COM(1) About Me  (Show Source):
You can put this solution on YOUR website!
y=-1 and x=5