SOLUTION: You are thinking of building a new machine that will save you $1000 in the first year. The machine will then begin to wear out so that the savings declines at a rate of 2% per year

Algebra ->  Exponential-and-logarithmic-functions -> SOLUTION: You are thinking of building a new machine that will save you $1000 in the first year. The machine will then begin to wear out so that the savings declines at a rate of 2% per year      Log On


   



Question 476268: You are thinking of building a new machine that will save you $1000 in the first year. The machine will then begin to wear out so that the savings declines at a rate of 2% per year forever. What is the present value of the savings? (r=6%)
Answer by Theo(13342) About Me  (Show Source):
You can put this solution on YOUR website!
your have savings of 1000 per year.
the present worth of those savings in perpetuity would be 1000 / .06 assuming that the 1000 per year did not decrease by 2% per year.
that value would be equal to 16,666.67
it assumes end of year payments are being made.
this means that the first savings is at the end of the first year but the present value of all payments is brought back to the beginning of the first year.
this includes the first payment.
the present value of the first payment is 1000 / 1.06 = 943.3962.
after the end of the first year, the savings are being diminished by 2% of the current value of the payments.
this means that the savings at the end of the second year is equal to .98 * 1000 and the savings at the end of the third year is equal to .98^2 * 1000, etc.
the present value of the savings at the end of the second year brought back to the end of the first year would therefore be 1000 * .98 / 1.06 = 924.5283019
since (1000 * .98) / 1.06 is equivalent to 1000 / 1.081632653, we can use the rate of 1.081632653 to simulate a loss of 2% each year divided by 6% each year.
Assuming this to be true, then we'll look at the first 3 years to get you comfortable with what is happening.
out cash flow would be as follows:
time point 0 is the beginning of the first year.
time point 1 is the end of the first year and the beginning of the second year.
gime point 2 is the end of the second year and the beginning of the third year, etc.
here's what our cash flow would look like if we did the calculations by multiplying each succeeding savings by .98 before discounting to the present value.
                                                          cumulative
time     savings              present value               present value
point                         of savings                  of savings
0                                                          
1        1000                 1000/1.06=943.3962264       943.3962264
2        1000*.98 = 980       980/1.06^2=872.1965112      1815.592738
3        1000*.98^2=960.4     960.4/1.06^3=806.3703594    2621.963097

here's what our cash flow would look like if we did the calculations by dividing by a composite rate of 1.06/.98 = 1.081632653
we use the composite rate to get the present value in time point 1 and then use the regular rate to get the present value from time point 1 to time point 0.
it works like this:
                                                          cumulative
time     savings              present value               present value
point                         of savings                  of savings
0                                                          
1        1000                 1000/1.06=943.3962264       943.3962264
2        1000                 1000/1.081632653/1.06
                              =872.1965112                1815.592738
3        1000                 1000/1.081632653^2/1.06
                              =806.3703594                2621.963097

Both methods get the same present value.
What this allows us to do, however, is extend the logic to perpetuity as follows:
The present value of the payments that are reduced each year brought back to time point 1 would be equal to:
1000/.081632653 = 12250
that includes all payments except the payment in time point 1.
we now add that payment to the total value to get 13250 and then bring that back to time point 0 at 6% to get a present value of 12,500.
that is the present value of savings, assuming that the value of savings is going down by 2% each year after the first year.
this is tricky, but think about what we just did.
we looked at the problem from the perspective of time point 1 when we started losing 2% of our savings each year.
that made the composite rate equal to 1.06/.98 = 1.081632653
this is equal to an interest rate of 8.1632653% per year which is equivalent to an interest rate of .081632653 per year (interest rate percent is equal to interest rate * 100%).
our perpetuity formula gets us a present value of 1000/.081632653 which equals 12,250.
those savings include all savings except the 1000 savings in time point 1.
we need to add the savings in time point 1 and then bring back the new total to time point 0 at 6% interest rate.
that equals 12250 + 1000 = 13250 / 1.06 = 12,500.
that's your answer.
if you looked at this from the perspective of a cash flow, this is what you would have seen.
I went out 300 years which looks like its enough to get a value that is very close to perpetuity if not right on.
the first column is the time points
the second column is the savings each year. this is reduced by 2% each year after time point 1
the third column is the present value of the savings each year. those savings are being brought back to time point 0 by dividing by 1.06 for each year that they are removed from time point 0. the value in time point 1 is being divided by 1.06. the value in time point 2 is being divided by 1.06^2, etc.
the fourth column is the cumulative present value of the savings each year.
the sum of all the present value of savings for each year is the cumulative present value of savings which is the number you are looking for.
if you go down to time point 300 you will see that the cumulative present value of those savings is equal to 12,500 which is exactly the value we calculated using the formulas.
time point
        savings
                        present value of savings at 6% discount rate per year
                                        cumulative present value of savings
0			
1	1000	        943.3962264	943.3962264
2	980	        872.1965112	1815.592738
3	960.4	        806.3703594	2621.963097
4	941.192	        745.5122191	3367.475316
5	922.36816	689.247146	4056.722462
6	903.9207968	637.2284934	4693.950956
7	885.8423809	589.1357769	5283.086732
8	868.1255332	544.6726994	5827.759432
9	850.7630226	503.5653259	6331.324758
10	833.7477621	465.5603956	6796.885153
11	817.0728069	430.423762	7227.308915
12	800.7313507	397.9389498	7625.247865
13	784.7167237	367.9058215	7993.153687
14	769.0223893	340.1393444	8333.293031
15	753.6419415	314.4684505	8647.761482
16	738.5691026	290.7349825	8938.496464
17	723.7977206	268.7927197	9207.289184
18	709.3217662	248.5064767	9455.79566
19	695.1353309	229.7512709	9685.546931
20	681.2326242	212.4115523	9897.958484
21	667.6079718	196.3804918	10094.33898
22	654.2558123	181.5593226	10275.8983
23	641.1706961	167.8567322	10443.75503
24	628.3472822	155.1882996	10598.94333
25	615.7803365	143.4759751	10742.41931
26	603.4647298	132.6475996	10875.0669
27	591.3954352	122.63646	10997.70336
28	579.5675265	113.3808781	11111.08424
29	567.976176	104.8238307	11215.90807
30	556.6166524	96.91259822	11312.82067
31	545.4843194	89.59843987	11402.41911
32	534.574633	82.83629346	11485.25541
33	523.8831403	76.58449773	11561.8399
34	513.4054775	70.80453563	11632.64444
35	503.137368	65.4607971	11698.10524
36	493.0746206	60.52035958	11758.6256
37	483.2131282	55.95278527	11814.57838
38	473.5488656	51.72993355	11866.30831
39	464.0778883	47.82578762	11914.1341
40	454.7963306	44.21629422	11958.3504
41	445.700404	40.87921541	11999.22961
42	436.7863959	37.79399161	12037.0236
43	428.050668	34.94161488	12071.96522
44	419.4896546	32.30451187	12104.26973
45	411.0998615	29.8664355	12134.13617
46	402.8778643	27.6123649	12161.74853
47	394.820307	25.52841283	12187.27694
48	386.9239008	23.60174016	12210.87868
49	379.1854228	21.82047676	12232.69916
50	371.6017144	20.17364832	12252.87281
51	364.1696801	18.65110883	12271.52392
52	356.8862865	17.24347797	12288.76739
53	349.7485608	15.94208341	12304.70948
54	342.7535895	14.7389073	12319.44839
55	335.8985177	13.62653694	12333.07492
56	329.1805474	12.59811906	12345.67304
57	322.5969364	11.64731762	12357.32036
58	316.1449977	10.76827478	12368.08863
59	309.8220978	9.955574796	12378.04421
60	303.6256558	9.20421066	12387.24842
61	297.5531427	8.509553252	12395.75797
62	291.6020798	7.867322818	12403.6253
63	285.7700382	7.273562605	12410.89886
64	280.0546375	6.724614484	12417.62347
65	274.4535447	6.21709641	12423.84057
66	268.9644738	5.747881586	12429.58845
67	263.5851844	5.314079202	12434.90253
68	258.3134807	4.913016621	12439.81555
69	253.1472111	4.542222914	12444.35777
70	248.0842668	4.199413637	12448.55718
71	243.1225815	3.882476759	12452.43966
72	238.2601299	3.589459645	12456.02912
73	233.4949273	3.31855703	12459.34768
74	228.8250287	3.068099896	12462.41578
75	224.2485282	2.836545187	12465.25232
76	219.7635576	2.622466305	12467.87479
77	215.3682864	2.42454432	12470.29933
78	211.0609207	2.241559843	12472.54089
79	206.8397023	2.072385515	12474.61328
80	202.7029082	1.915979061	12476.52926
81	198.6488501	1.771376868	12478.30063
82	194.6758731	1.637688047	12479.93832
83	190.7823556	1.51408895	12481.45241
84	186.9667085	1.399818085	12482.85223
85	183.2273743	1.294171437	12484.1464
86	179.5628268	1.196498121	12485.3429
87	175.9715703	1.106196376	12486.44909
88	172.4521389	1.022709857	12487.4718
89	169.0030961	0.945524208	12488.41733
90	165.6230342	0.87416389	12489.29149
91	162.3105735	0.808189257	12490.09968
92	159.0643621	0.747193841	12490.84688
93	155.8830748	0.690801853	12491.53768
94	152.7654133	0.638665864	12492.17634
95	149.710105	0.590464667	12492.76681
96	146.7159029	0.545901296	12493.31271
97	143.7815849	0.504701198	12493.81741
98	140.9059532	0.466610542	12494.28402
99	138.0878341	0.431394652	12494.71542
100	135.3260774	0.398836565	12495.11425
101	132.6195559	0.368735692	12495.48299
102	129.9671648	0.340906583	12495.82389
103	127.3678215	0.315177784	12496.13907
104	124.8204651	0.291390782	12496.43046
105	122.3240558	0.269399025	12496.69986
106	119.8775746	0.249067023	12496.94893
107	117.4800231	0.230269512	12497.1792
108	115.1304227	0.212890681	12497.39209
109	112.8278142	0.196823459	12497.58891
110	110.5712579	0.181968859	12497.77088
111	108.3598328	0.16823536	12497.93912
112	106.1926361	0.155538352	12498.09466
113	104.0687834	0.143799608	12498.23845
114	101.9874077	0.132946808	12498.3714
115	99.94765958	0.122913086	12498.49431
116	97.94870639	0.113636627	12498.60795
117	95.98973226	0.105060278	12498.71301
118	94.06993762	0.0971312	12498.81014
119	92.18853887	0.089800544	12498.89994
120	90.34476809	0.083023144	12498.98297
121	88.53787273	0.076757246	12499.05972
122	86.76711527	0.070964247	12499.13069
123	85.03177297	0.065608454	12499.1963
124	83.33113751	0.060656873	12499.25695
125	81.66451476	0.056078996	12499.31303
126	80.03122446	0.051846619	12499.36488
127	78.43059997	0.047933666	12499.41281
128	76.86198797	0.044316031	12499.45713
129	75.32474821	0.040971425	12499.4981
130	73.81825325	0.037879242	12499.53598
131	72.34188818	0.035020431	12499.571
132	70.89505042	0.03237738	12499.60338
133	69.47714941	0.029933804	12499.63331
134	68.08760642	0.027674649	12499.66099
135	66.7258543	0.025585996	12499.68657
136	65.39133721	0.023654978	12499.71023
137	64.08351047	0.021869696	12499.7321
138	62.80184026	0.020219153	12499.75232
139	61.54580345	0.018693179	12499.77101
140	60.31488738	0.017282373	12499.78829
141	59.10858963	0.015978043	12499.80427
142	57.92641784	0.014772153	12499.81904
143	56.76788948	0.013657274	12499.8327
144	55.63253169	0.012626536	12499.84532
145	54.51988106	0.01167359	12499.857
146	53.42948344	0.010792564	12499.86779
147	52.36089377	0.009978031	12499.87777
148	51.3136759	0.009224972	12499.88699
149	50.28740238	0.008528748	12499.89552
150	49.28165433	0.007885069	12499.90341
151	48.29602124	0.007289969	12499.9107
152	47.33010082	0.006739783	12499.91744
153	46.3834988	0.00623112	12499.92367
154	45.45582883	0.005760847	12499.92943
155	44.54671225	0.005326066	12499.93476
156	43.655778	0.004924099	12499.93968
157	42.78266244	0.004552469	12499.94423
158	41.9270092	0.004208886	12499.94844
159	41.08846901	0.003891234	12499.95233
160	40.26669963	0.003597556	12499.95593
161	39.46136564	0.003326043	12499.95926
162	38.67213833	0.00307502	12499.96233
163	37.89869556	0.002842943	12499.96517
164	37.14072165	0.002628382	12499.9678
165	36.39790722	0.002430013	12499.97023
166	35.66994907	0.002246616	12499.97248
167	34.95655009	0.00207706	12499.97456
168	34.25741909	0.001920301	12499.97648
169	33.57227071	0.001775372	12499.97825
170	32.90082529	0.001641382	12499.97989
171	32.24280879	0.001517504	12499.98141
172	31.59795261	0.001402976	12499.98281
173	30.96599356	0.001297091	12499.98411
174	30.34667369	0.001199197	12499.98531
175	29.73974021	0.001108692	12499.98642
176	29.14494541	0.001025017	12499.98744
177	28.5620465	0.000947657	12499.98839
178	27.99080557	0.000876136	12499.98927
179	27.43098946	0.000810012	12499.99008
180	26.88236967	0.000748879	12499.99083
181	26.34472228	0.00069236	12499.99152
182	25.81782783	0.000640106	12499.99216
183	25.30147127	0.000591797	12499.99275
184	24.79544185	0.000547133	12499.9933
185	24.29953301	0.00050584	12499.9938
186	23.81354235	0.000467663	12499.99427
187	23.3372715	0.000432368	12499.9947
188	22.87052607	0.000399736	12499.9951
189	22.41311555	0.000369567	12499.99547
190	21.96485324	0.000341676	12499.99581
191	21.52555618	0.000315889	12499.99613
192	21.09504505	0.000292048	12499.99642
193	20.67314415	0.000270007	12499.99669
194	20.25968127	0.000249629	12499.99694
195	19.85448764	0.000230789	12499.99717
196	19.45739789	0.000213371	12499.99739
197	19.06824993	0.000197267	12499.99758
198	18.68688493	0.000182379	12499.99777
199	18.31314724	0.000168615	12499.99793
200	17.94688429	0.000155889	12499.99809
201	17.58794661	0.000144124	12499.99823
202	17.23618767	0.000133247	12499.99837
203	16.89146392	0.00012319	12499.99849
204	16.55363464	0.000113893	12499.9986
205	16.22256195	0.000105297	12499.99871
206	15.89811071	9.73503E-05	12499.99881
207	15.5801485	9.00031E-05	12499.9989
208	15.26854553	8.32104E-05	12499.99898
209	14.96317462	7.69304E-05	12499.99906
210	14.66391112	7.11243E-05	12499.99913
211	14.3706329	6.57564E-05	12499.99919
212	14.08322024	6.07937E-05	12499.99926
213	13.80155584	5.62055E-05	12499.99931
214	13.52552472	5.19636E-05	12499.99936
215	13.25501423	4.80418E-05	12499.99941
216	12.98991394	4.4416E-05	12499.99946
217	12.73011566	4.10638E-05	12499.9995
218	12.47551335	3.79647E-05	12499.99953
219	12.22600308	3.50994E-05	12499.99957
220	11.98148302	3.24504E-05	12499.9996
221	11.74185336	3.00013E-05	12499.99963
222	11.50701629	2.77371E-05	12499.99966
223	11.27687597	2.56437E-05	12499.99969
224	11.05133845	2.37083E-05	12499.99971
225	10.83031168	2.1919E-05	12499.99973
226	10.61370545	2.02648E-05	12499.99975
227	10.40143134	1.87353E-05	12499.99977
228	10.19340271	1.73214E-05	12499.99979
229	9.989534656	1.60141E-05	12499.9998
230	9.789743963	1.48055E-05	12499.99982
231	9.593949084	1.36881E-05	12499.99983
232	9.402070102	1.2655E-05	12499.99984
233	9.2140287	1.16999E-05	12499.99986
234	9.029748126	1.08169E-05	12499.99987
235	8.849153163	1.00005E-05	12499.99988
236	8.6721701	9.24578E-06	12499.99989
237	8.498726698	8.54799E-06	12499.9999
238	8.328752164	7.90285E-06	12499.9999
239	8.162177121	7.30641E-06	12499.99991
240	7.998933578	6.75499E-06	12499.99992
241	7.838954907	6.24518E-06	12499.99992
242	7.682175809	5.77384E-06	12499.99993
243	7.528532293	5.33808E-06	12499.99993
244	7.377961647	4.93521E-06	12499.99994
245	7.230402414	4.56274E-06	12499.99994
246	7.085794365	4.21838E-06	12499.99995
247	6.944078478	3.90001E-06	12499.99995
248	6.805196909	3.60567E-06	12499.99996
249	6.66909297	3.33354E-06	12499.99996
250	6.535711111	3.08196E-06	12499.99996
251	6.404996889	2.84936E-06	12499.99997
252	6.276896951	2.63431E-06	12499.99997
253	6.151359012	2.43549E-06	12499.99997
254	6.028331832	2.25168E-06	12499.99997
255	5.907765195	2.08175E-06	12499.99997
256	5.789609891	1.92463E-06	12499.99998
257	5.673817693	1.77938E-06	12499.99998
258	5.56034134	1.64508E-06	12499.99998
259	5.449134513	1.52093E-06	12499.99998
260	5.340151822	1.40614E-06	12499.99998
261	5.233348786	1.30002E-06	12499.99998
262	5.12868181	1.2019E-06	12499.99999
263	5.026108174	1.11119E-06	12499.99999
264	4.925586011	1.02733E-06	12499.99999
265	4.82707429	9.49795E-07	12499.99999
266	4.730532805	8.78112E-07	12499.99999
267	4.635922149	8.11839E-07	12499.99999
268	4.543203706	7.50568E-07	12499.99999
269	4.452339631	6.93922E-07	12499.99999
270	4.363292839	6.4155E-07	12499.99999
271	4.276026982	5.93131E-07	12499.99999
272	4.190506442	5.48367E-07	12499.99999
273	4.106696314	5.06981E-07	12499.99999
274	4.024562387	4.68718E-07	12499.99999
275	3.94407114	4.33343E-07	12499.99999
276	3.865189717	4.00638E-07	12500
277	3.787885922	3.70401E-07	12500
278	3.712128204	3.42446E-07	12500
279	3.63788564	3.16601E-07	12500
280	3.565127927	2.92707E-07	12500
281	3.493825369	2.70616E-07	12500
282	3.423948861	2.50192E-07	12500
283	3.355469884	2.3131E-07	12500
284	3.288360486	2.13852E-07	12500
285	3.222593277	1.97712E-07	12500
286	3.158141411	1.82791E-07	12500
287	3.094978583	1.68995E-07	12500
288	3.033079011	1.56241E-07	12500
289	2.972417431	1.44449E-07	12500
290	2.912969082	1.33547E-07	12500
291	2.854709701	1.23468E-07	12500
292	2.797615507	1.1415E-07	12500
293	2.741663196	1.05535E-07	12500
294	2.686829933	9.75699E-08	12500
295	2.633093334	9.02061E-08	12500
296	2.580431467	8.33981E-08	12500
297	2.528822838	7.71039E-08	12500
298	2.478246381	7.12848E-08	12500
299	2.428681454	6.59048E-08	12500
300	2.380107824	6.09308E-08	12500