SOLUTION: Dear math teacher,
Would you help me explain how to convert r! to r?
Here is the problem I am talking about:
Given nPr=3024 and nCr=126, find r.
nCr=nPr/(r!)
126=30
Algebra ->
Permutations
-> SOLUTION: Dear math teacher,
Would you help me explain how to convert r! to r?
Here is the problem I am talking about:
Given nPr=3024 and nCr=126, find r.
nCr=nPr/(r!)
126=30
Log On
Question 475581: Dear math teacher,
Would you help me explain how to convert r! to r?
Here is the problem I am talking about:
Given nPr=3024 and nCr=126, find r.
nCr=nPr/(r!)
126=3024/(r!)
r!=24
Here is where I get stuck because I don't know how to take factorial to an integer. The textbook's answer lists r=4 as an answer but I do not understand how they converted r! to r. Would you please explain it to me?
Thank you very much for your help and time.
Sincerely,
You can put this solution on YOUR website! nPr/nCr=r! --> r!= 3024/126= 24 --> r=4 ....--> r!=24=4*3*2*1=4!
nC4= 126 --> n·(n-1)·(n-2)·(n-3)/24= 126 --> n·(n-1)·(n-2)·(n-3)= 3024
--> n=9 it is a solution