SOLUTION: 7^(2X+1)=(1)/(3^(2-X)

Algebra ->  Exponential-and-logarithmic-functions -> SOLUTION: 7^(2X+1)=(1)/(3^(2-X)      Log On


   



Question 472432: 7^(2X+1)=(1)/(3^(2-X)
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
7^(2X+1)=(1)/(3^(2-X)
**
7^(2x+1)(3^(2-x)=1
take log of both sides
(2x+1)log7+(2-x)log3=log1=0
2xlog7+log7+2log3-xlog3=0
x(2log7-2log3)=-log7-2log3
x=-(log7+2log3)/(2log7-2log3)
using calculator:
x=-1.4833
Check:
7^(2X+1)=(1)/(3^(2-X)
7^(2*-1.4833+1)=(1)/3^(2-(-1.4833))
7^(-1.9666)=(1)/3^(3.4833)
.0218=.0218