SOLUTION: Let z be a random variable with a standard normal distribution. Find the indicated probability. P(z< -2.18)=

Algebra ->  Probability-and-statistics -> SOLUTION: Let z be a random variable with a standard normal distribution. Find the indicated probability. P(z< -2.18)=      Log On


   



Question 471570: Let z be a random variable with a standard normal distribution. Find the indicated probability. P(z< -2.18)=
Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
I'm going to use a table to solve this problem. Tables are usually given at the back of the book.

Standard Normal Probability Table:
The table shows the area to the left of a z-score (area shown in red)


Now use the table to find the area to the left of -2.18 (it's shown in green and red below)
z0.000.010.020.030.040.050.060.070.080.09
-3.40.00030.00030.00030.00030.00030.00030.00030.00030.00030.0002
-3.30.00050.00050.00050.00040.00040.00040.00040.00040.00040.0003
-3.20.00070.00070.00060.00060.00060.00060.00060.00050.00050.0005
-3.10.00100.00090.00090.00090.00080.00080.00080.00080.00070.0007
-3.00.00130.00130.00130.00120.00120.00110.00110.00110.00100.0010
-2.90.00190.00180.00180.00170.00160.00160.00150.00150.00140.0014
-2.80.00260.00250.00240.00230.00230.00220.00210.00210.00200.0019
-2.70.00350.00340.00330.00320.00310.00300.00290.00280.00270.0026
-2.60.00470.00450.00440.00430.00410.00400.00390.00380.00370.0036
-2.50.00620.00600.00590.00570.00550.00540.00520.00510.00490.0048
-2.40.00820.00800.00780.00750.00730.00710.00690.00680.00660.0064
-2.30.01070.01040.01020.00990.00960.00940.00910.00890.00870.0084
-2.20.01390.01360.01320.01290.01250.01220.01190.01160.01130.0110
-2.10.01790.01740.01700.01660.01620.01580.01540.01500.01460.0143
-2.00.02280.02220.02170.02120.02070.02020.01970.01920.01880.0183
-1.90.02870.02810.02740.02680.02620.0256 0.02500.02440.02390.0233
-1.80.03590.03510.03440.03360.03290.03220.03140.03070.03010.0294
-1.70.04460.04360.04270.04180.04090.04010.03920.03840.03750.0367
-1.60.05480.05370.05260.05160.05050.04950.04850.04750.04650.0455
-1.50.06680.06550.06430.06300.06180.06060.05940.05820.05710.0559
-1.40.08080.07930.07780.07640.07490.07350.07210.07080.06940.0681
-1.30.09680.09510.09340.09180.09010.08850.08690.08530.08380.0823
-1.20.11510.11310.11120.10930.10750.10560.10380.10200.10030.0985
-1.10.13570.13350.13140.12920.12710.12510.12300.12100.11900.1170
-1.00.15870.15620.15390.15150.14920.14690.14460.14230.14010.1379
-0.90.18410.18140.17880.17620.17360.17110.16850.16600.16350.1611
-0.80.21190.20900.20610.20330.20050.19770.19490.19220.18940.1867
-0.70.24200.23890.23580.23270.22960.22660.22360.22060.21770.2148
-0.60.27430.27090.26760.26430.26110.25780.25460.25140.24830.2451
-0.50.30850.30500.30150.29810.29460.29120.28770.28430.28100.2776
-0.40.34460.34090.33720.33360.33000.32640.32280.31920.31560.3121
-0.30.38210.37830.37450.37070.36690.36320.35940.35570.35200.3483
-0.20.42070.41680.41290.40900.40520.40130.39740.39360.38970.3859
-0.10.46020.45620.45220.44830.44430.44040.43640.43250.42860.4247
0.00.50000.49600.49200.48800.48400.48010.47610.47210.46810.4641

From the table, we see that the area to the left of z = -2.18 is 0.0146


So P(z< -2.18) = 0.0146