SOLUTION: an artifact was found and tested for its carbon-14 content. If 81% of the original carbon-14 was still present, what is it probable age(to the nearest 100yrs)? use that carbon-14
Algebra ->
Quadratic Equations and Parabolas
-> SOLUTION: an artifact was found and tested for its carbon-14 content. If 81% of the original carbon-14 was still present, what is it probable age(to the nearest 100yrs)? use that carbon-14
Log On
Question 471331: an artifact was found and tested for its carbon-14 content. If 81% of the original carbon-14 was still present, what is it probable age(to the nearest 100yrs)? use that carbon-14 has a half-life of 5730 yrs. Answer by ankor@dixie-net.com(22740) (Show Source):
You can put this solution on YOUR website! an artifact was found and tested for its carbon-14 content.
If 81% of the original carbon-14 was still present, what is it probable age(to the nearest 100yrs)?
use that carbon-14 has a half-life of 5730 yrs.
:
The half life formula: A = Ao*2^(-t/h)
Where
A = resulting amt after t yrs
Ao = initial amt
t = time in yrs
h = half-life of substance
:
When we are dealing with percent we can use the initial amt of 100
:
100*2^(-t/5730) = 81
2^(-t/5730) =
2^(-t/5730) = .81
find the nat log of both sides
ln(2^(-t/5730)) = ln(81)
log equiv of exponents ln(2) = ln(81) = = -.304
multiply both sides by -5730, results
t = 1,742 yrs