SOLUTION: Use a truth table to determine whether the two statements are equivalent ∼(p → q), p ∧ ∼q
Algebra ->
Conjunction
-> SOLUTION: Use a truth table to determine whether the two statements are equivalent ∼(p → q), p ∧ ∼q
Log On
∼(p → q), p ∧ ∼q
| p | q | ~q | p → q | ∼(p → q) | p ∧ ∼q |
———————————————————————————————————————————
| T | T | F | T | F | F |
| T | F | T | F | T | T |
| F | T | F | T | F | F |
| F | F | T | T | F | F |
The last two columns are the same FTFF, so they
are equivalent and we can now write:
∼(p → q) ⇔ p ∧ ∼q
Edwin