SOLUTION: Prove that the identity is true {{{ tan(x)^3= tan(x)sec(x)^2-tan(x) }}}

Algebra ->  Trigonometry-basics -> SOLUTION: Prove that the identity is true {{{ tan(x)^3= tan(x)sec(x)^2-tan(x) }}}      Log On


   



Question 451415: Prove that the identity is true
+tan%28x%29%5E3=+tan%28x%29sec%28x%29%5E2-tan%28x%29+

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
tan(x)^3= tan(x)sec(x)^2-tan(x)
..
tan(x)^3= tan(x)sec(x)^2-tan(x)
Starting with right-hand side
tan(x)sec(x)^2-tan(x)
identity: tan^2(x)+1=sec^2(x)
=tan(x)(tan^2(x)+1)-tan(x)
=tan^3(x)+tan(x)-tan(x)
=tan^3(x)
Verified: right-hand side=left-hand side