SOLUTION: 3^6x=2^(-x-4) using base-10 logarithms

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: 3^6x=2^(-x-4) using base-10 logarithms      Log On


   



Question 444481: 3^6x=2^(-x-4)
using base-10 logarithms

Answer by chriswen(106) About Me  (Show Source):
You can put this solution on YOUR website!
3^6x=2^(-x-4)
log3^6x=log2^(-x+4) ... log both sides
6xlog3=(-x+4)log2 ... since, logm^n=nlogm
6xlog3=-xlog2+4log2 ... distribution
6xlog3+xlog2=4log2
x(6log3+log2)=4log2
x=4log2/(6log3+log2) ... now you can just input this into your calculator or you can simplify it more.
x=.380598