SOLUTION: log₃(2x+1)=1 log_((x-1))⁡ ( 4x-4)=2 2log x=log 16:x 3log y+2log2-32log:y Prove that if a and b are positive and ≠ 1,(log_a⁡b)(log_a⁡ b)=1

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: log₃(2x+1)=1 log_((x-1))⁡ ( 4x-4)=2 2log x=log 16:x 3log y+2log2-32log:y Prove that if a and b are positive and ≠ 1,(log_a⁡b)(log_a⁡ b)=1      Log On


   



Question 441516: log₃(2x+1)=1
log_((x-1))⁡ ( 4x-4)=2
2log x=log 16:x
3log y+2log2-32log:y
Prove that if a and b are positive and ≠ 1,(log_a⁡b)(log_a⁡ b)=1

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
log₃(2x+1)=1
2x+1 = 3^1
2x+1 = 3
x = 1
----------------------------------
log_((x-1))⁡ ( 4x-4)=2
Unclear
----------------------------------
2log x=log 16:x
Unclear
----------------------------------
3log y+2log2-32log:y
Unclear
----------------------------------
Prove that if a and b are positive and ≠ 1,(log_a⁡b)(log_a⁡ b)=1
loga(b)*loga(b) = 1 is not generally true.
=============================================
Cheers,
Stan H.