SOLUTION: log₃(2x+1)=1
log_((x-1))⁡ ( 4x-4)=2
2log x=log 16:x
3log y+2log2-32log:y
Prove that if a and b are positive and ≠ 1,(log_a⁡b)(log_a⁡ b)=1
Algebra ->
Logarithm Solvers, Trainers and Word Problems
-> SOLUTION: log₃(2x+1)=1
log_((x-1))⁡ ( 4x-4)=2
2log x=log 16:x
3log y+2log2-32log:y
Prove that if a and b are positive and ≠ 1,(log_a⁡b)(log_a⁡ b)=1
Log On
Question 441516: log₃(2x+1)=1
log_((x-1)) ( 4x-4)=2
2log x=log 16:x
3log y+2log2-32log:y
Prove that if a and b are positive and ≠ 1,(log_ab)(log_a b)=1 Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! log₃(2x+1)=1
2x+1 = 3^1
2x+1 = 3
x = 1
----------------------------------
log_((x-1)) ( 4x-4)=2
Unclear
----------------------------------
2log x=log 16:x
Unclear
----------------------------------
3log y+2log2-32log:y
Unclear
----------------------------------
Prove that if a and b are positive and ≠ 1,(log_ab)(log_a b)=1
loga(b)*loga(b) = 1 is not generally true.
=============================================
Cheers,
Stan H.