SOLUTION: Prove (cot^2x)/(sinx+cosx)=(cos^2xsinx-cos^3x)/(2sin^4x-sin^2x)

Algebra ->  Trigonometry-basics -> SOLUTION: Prove (cot^2x)/(sinx+cosx)=(cos^2xsinx-cos^3x)/(2sin^4x-sin^2x)      Log On


   



Question 441226: Prove
(cot^2x)/(sinx+cosx)=(cos^2xsinx-cos^3x)/(2sin^4x-sin^2x)

Answer by Gogonati(855) About Me  (Show Source):
You can put this solution on YOUR website!
We transform the right side until reach the same expression as the left side:
= %28cosx%29%5E2%28sinx-cosx%29%2F%28%28sinx%29%5E2%282%28sinx%29%5E2-1%29%29=
= %28cotx%29%5E2%28sinx-cosx%29%2F%282%28sinx%29%5E2-%28sinx%29%5E2-%28cosx%29%5E2%29=
= , thus
the identity is true.