SOLUTION: solve for x 2+4(5)^x=16 Solve for x Log of 7 (5x-1)=2 Log of 2 (1- x) - Log of 2 (-2x)=3 Log (-2x)+ Log (3)=Log (96)

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: solve for x 2+4(5)^x=16 Solve for x Log of 7 (5x-1)=2 Log of 2 (1- x) - Log of 2 (-2x)=3 Log (-2x)+ Log (3)=Log (96)      Log On


   



Question 43687: solve for x 2+4(5)^x=16
Solve for x Log of 7 (5x-1)=2
Log of 2 (1- x) - Log of 2 (-2x)=3
Log (-2x)+ Log (3)=Log (96)

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
solve for x: 2+4(5)^x=16
4(5^x)=14
5^x=3/5
Take the log of both sides to get:
xlog5=log(3/5)
x=-0.31739381...
Solve for x: Log of 7 (5x-1)=2
Assume you mean log(base7)(5x-1)=2
7^2=5x-1
49=5x-1
50=5x
x=10
Log of 2 (1- x) - Log of 2 (-2x)=3
Assume you mean log(base2)(1-x) - log(base2)(-2x)=3
log(base 2)[(1-x)/-2x]=3
2^3=[(1-x)/-2x]
[(1-x)/-2x]=8
1-x=-16x
1=-15x
x=-1/15
Log (-2x)+ Log (3)=Log (96)
Log(-6x)=log(96)
-6x=96
x=-16
Cheers,
Stan H.