SOLUTION: How do you solve for x: ln(2x+3)+ln(x)=ln(e)

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: How do you solve for x: ln(2x+3)+ln(x)=ln(e)      Log On


   



Question 435452: How do you solve for x: ln(2x+3)+ln(x)=ln(e)
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
How do you solve for x: ln(2x+3)+ln(x)=ln(e)
..
ln(2x+3)+ln(x)=ln(e)
ln(2x+3)(x)=1
convert to exponential form
e^1=2x^2+3x
2x^2+3x-e=0
solve by quadratic formula
a=2, b=3, c=-e
x=(-3+-Sqrt(3^2-4*2*-e))/2*2
x=(-3+-sqrt(30.75))/4
x=(-3+-5.55)=-8.55/4 or 2.55/4=-2.14 or .64
x=-2.14 (reject, (2x+3)>0)
x=.64