| 
 
 
| Question 43192:  List the potential rational zeros of the function below.
 f(x) = 6x^4 + 2x^3 - 3x^2 + 2
 
 a. 1/6, -1/6, 1/2, -1/2, 1/3, -1/3, 2/3, -2/3, 1, -1, 2, -2
 b. 1/6, -1/6, 1/2, -1/2, 1/3, -1/3, 2/3, -2/3, 1, -1, 2, -2, 3, -3
 c. 1/6, -1/6, 1/2, -1/2, 1/3, -1/3, 1, -1, 2, -2
 d. 1/2, -1/2, 3/2, -3/2, 1, -1, 2, -2, 3, -3, 6, -6
 e. None of the others
 
 Found 2 solutions by  Nate, stanbon:
 Answer by Nate(3500)
      (Show Source): 
You can put this solution on YOUR website! f(x) = 6x^4 + 2x^3 - 3x^2 + 2 factors of
  = 1,2 factors of
  = 1,2,3,6 a/b and -a/b
 1, 2, 1/2, 1/3, 2/3, 1/6, -1, -2, -1/2, -1/3, -2/3, -1/6
 (A)
Answer by stanbon(75887)
      (Show Source): 
You can put this solution on YOUR website! f(x) = 6x^4 + 2x^3 - 3x^2 + 2 a. 1/6, -1/6, 1/2, -1/2, 1/3, -1/3, 2/3, -2/3, 1, -1, 2, -2
 b. 1/6, -1/6, 1/2, -1/2, 1/3, -1/3, 2/3, -2/3, 1, -1, 2, -2, 3, -3
 c. 1/6, -1/6, 1/2, -1/2, 1/3, -1/3, 1, -1, 2, -2
 d. 1/2, -1/2, 3/2, -3/2, 1, -1, 2, -2, 3, -3, 6, -6
 e. None of the others
 
 If p/q is a rational root of f(x) then p divides 2 and q divides 6
 Therefore p can be 1,-1,2,-2
 and q can be 1,-1,2,-2,3,-3,6,-6
 "a" is the answer.  Can you see why?
 Cheers,
 Stan H.
 | 
  
 | 
 |