SOLUTION: PLEASE, PLEASE HELP!!! I AM HAVING SUCH TROUBLE WITH THIS ASSSINMENT AND REALLY NEED THE HELP BAD. OUT OF ALL MY OTHER SUBJECTS, MATH IS NOT MY STRONG SUIT SO I TEND TO STRUGGLE. I

Algebra ->  Coordinate Systems and Linear Equations  -> Linear Equations and Systems Word Problems -> SOLUTION: PLEASE, PLEASE HELP!!! I AM HAVING SUCH TROUBLE WITH THIS ASSSINMENT AND REALLY NEED THE HELP BAD. OUT OF ALL MY OTHER SUBJECTS, MATH IS NOT MY STRONG SUIT SO I TEND TO STRUGGLE. I      Log On


   



Question 424569: PLEASE, PLEASE HELP!!! I AM HAVING SUCH TROUBLE WITH THIS ASSSINMENT AND REALLY NEED THE HELP BAD. OUT OF ALL MY OTHER SUBJECTS, MATH IS NOT MY STRONG SUIT SO I TEND TO STRUGGLE. I'M JUST TRYING TO PASS AND GET THROUGH IT. THANK YOU IN ADVANCED!!!!
BRIDGET


HERE IS THE ASSIGNMENT:


Hint: Pay attention to the units of measure. You may have to convert from feet to miles several times in this assignment. You can use 1 mile = 5,280 feet for your conversions.
1. Many people know that the weight of an object varies on different planets, but did you know that the weight of an object on Earth also varies according to the elevation of the object? In particular, the weight of an object follows this equation: , where C is a constant, and r is the distance that the object is from the center of Earth.
a. Solve the equation for r.
b. Suppose that an object is 100 pounds when it is at sea level. Find the value of C that makes the equation true. (Sea level is 3,963 miles from the center of the Earth.)
c. Use the value of C you found in the previous question to determine how much the object would weigh in
i. Death Valley (282 feet below sea level).
ii. the top of Mount McKinley (20,320 feet above sea level).
2. The equation gives the distance, D, in miles that a person can see to the horizon from a height, h, in feet.
a. Solve this equation for h.
b. Long’s Peak in Rocky Mountain National Park, is 14,255 feet in elevation. How far can you see to the horizon from the top of Long’s Peak? Can you see Cheyenne, Wyoming (about 89 miles away)? Explain your answer.

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
1. Many people know that the weight of an object varies on different planets, but did you know that the weight of an object on Earth also varies according to the elevation of the object? In particular, the weight of an object follows this equation: , where C is a constant, and r is the distance that the object is from the center of Earth.
Equation missing from post.
Cheers,
Stan H.
===============





a. Solve the equation for r.
b. Suppose that an object is 100 pounds when it is at sea level. Find the value of C that makes the equation true. (Sea level is 3,963 miles from the center of the Earth.)
c. Use the value of C you found in the previous question to determine how much the object would weigh in
i. Death Valley (282 feet below sea level).
ii. the top of Mount McKinley (20,320 feet above sea level).
2. The equation gives the distance, D, in miles that a person can see to the horizon from a height, h, in feet.
a. Solve this equation for h.
b. Long’s Peak in Rocky Mountain National Park, is 14,255 feet in elevation. How far can you see to the horizon from the top of Long’s Peak? Can you see Cheyenne, Wyoming (about 89 miles away)? Explain your answer.