SOLUTION: log8(3x-2)=2 log2(4x)-log2(3=6) 4e^2x+1=12 log6(x+6)+log6(2=2) log3[log2(x+5)]=1 2log3(7)=log3(x)
Algebra
->
Exponential-and-logarithmic-functions
-> SOLUTION: log8(3x-2)=2 log2(4x)-log2(3=6) 4e^2x+1=12 log6(x+6)+log6(2=2) log3[log2(x+5)]=1 2log3(7)=log3(x)
Log On
Algebra: Exponent and logarithm as functions of power
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Exponential-and-logarithmic-functions
Question 411380
:
log8(3x-2)=2
log2(4x)-log2(3=6)
4e^2x+1=12
log6(x+6)+log6(2=2)
log3[log2(x+5)]=1
2log3(7)=log3(x)
Answer by
stanbon(75887)
(
Show Source
):
You can
put this solution on YOUR website!
log8(3x-2)=2
---
3x-2 = 8^2
3x-2 = 64
3x = 66
x = 22
--------------
log2(4x)-log2(3)=6
log2[(4x/3)] = 6
4x/3 = 2^6
4x = 3*64
x = 3*16
x = 48
----------------
4e^2x+1=12
e^(2x+1) = 3
2x+1 = ln(3)
2x = 0.09861
x = 0.04931
===============
Cheers,
Stan H.
===========
log6(x+6)+log6(2=2)
log3[log2(x+5)]=1
2log3(7)=log3(x)