SOLUTION: Determine the number of possible triangles for each given solution. a)A=45, c=100, a=25 b)B=70, c=90, b=85 c)C=100, c=6, a=85 d)A=60, b=4, a= 2radical3

Algebra ->  Triangles -> SOLUTION: Determine the number of possible triangles for each given solution. a)A=45, c=100, a=25 b)B=70, c=90, b=85 c)C=100, c=6, a=85 d)A=60, b=4, a= 2radical3      Log On


   



Question 406566: Determine the number of possible triangles for each given solution.
a)A=45, c=100, a=25
b)B=70, c=90, b=85
c)C=100, c=6, a=85
d)A=60, b=4, a= 2radical3

Answer by robertb(5830) About Me  (Show Source):
You can put this solution on YOUR website!
a)sinA%2Fa+=+sinC%2Fc ==> sinC+=+%28c%2Fa%29sinA+=+4%2Asin+45+%3E+1. So 0 triangles.
b) sinB%2Fb+=+sinC%2Fc==> sinC+=+%28c%2Fb%29sinB++=+0.995+%3C+1, so there could be one or two triangles.
c) sinA%2Fa+=+sinC%2Fc ==> sinA+=+%28a%2Fc%29sinC+%3E+1. So 0 triangles.
d) sinA%2Fa+=+sinB%2Fb ==> sinB+=+%28b%2Fa%29sinA+=++1, and there's exactly 1 triangle ( a right triangle!).