|  | 
| 
 
 
| Question 40585:  I am stumped on this question.  Can someone please help me with it.
 Find the equation, in standard form, including all integer coefficients, of the line perpendicular to 3x – 4y = 9 and passing through (-2, -1).
 Answer by stanbon(75887)
      (Show Source): 
You can put this solution on YOUR website! Find the equation, in standard form, including all integer coefficients, of the line perpendicular to 3x – 4y = 9 and passing through (-2, -1). 3x-4y=9
 y=(4y+9)/3
 y=(4/3)y+3
 slope = 4/3
 The line perpendicular to the given line must have a slope = -3/4.
 The form of the line equation must be y=mx+b where m=-3/4,x=-2,y=-1
 Therefore -1=(3/4)(-2)+b
 b-3/2 = -1
 b=1/2
 EQUATION of the line you want is
 y=(-3/4)x+1/2
 To put this in standard form, multiply thru by 4 to get:
 4y=-3x+2
 Then 3x+4y=2 (standard form of a line is ax+by=c)
 Cheers,
 Stan H.
 | 
  
 | 
 |  |  |