Question 404144: CRAMER RULE, ELIMIATION OR SUBSTITUTION METHOD, AND MATRICES PRACTICE PROBLEMS
1. Solve the system using the elimination or substitution method. 5x - 2y = 2; -3x + y = -2
A.
(1, 1)
B.
(-1, -3/2)
C.
(2, 4)
D.
(-2, 4)
2. Solve the system using the elimination or substitution method. x + 4y + z = -6; 3x - 2y - z = -10; 3y + 2z = 4
A.
(3, 2, -4)
B.
(-3, -2, 5)
C.
(1, 0, -2)
D.
(-2, 4, -5)
3. Solve the system using matrices. x + 4y + 2z = -4; 2x - y - z = 10; 2x + 3y + 2z = 2
A.
(3, -2, -1)
B.
(4, -2, 0)
C.
(-2, 5, 3)
D.
(1, -1, 3)
4. Given the cost function C(x) = 2700 + 31x and the revenue function R(x) = 49x, find the number of units that must be old to break even.
A.
150 units
B.
270 units
C.
220 units
D.
310 units
5. Solve the system using matrices. x - y = 1; -8x + 6y = 4
A.
(-5, -6)
B.
(2, 1)
C.
(-2, -1)
D.
(6, 5)
6. Solve the sysyem using Cramer's Rule. 2x - 3y = -13; 7x - 6y = -5
A.
(2, 3)
B.
(7, 9)
C.
(-5, -6)
D.
(-8, -1)
7. Solve the system using matrices. 2x - 8y = 12; x - 4y = -3
A.
(2, -1)
B.
(-3, 0)
C.
No Solution
D.
Infinitely many solutions
8. Solve the system using the elimination or substitution method. x + 2y - 3z = 9; -x + 3y - 2z = 1; 2x - 5y + 2z = 2
A.
(1, -3, 2)
B.
(0, 3, -2)
C.
(6, 3, 1)
D.
(3, 0, -2)
9. Solve the system using the elimination or substitution method. 14x - 7y = -7; 7x + y = 10
A.
(1, 3)
B.
(1, 1)
C.
(-1, -2)
D.
No solution
10. Solve the system using Cramer's rule. 2x + 8y = 11; 8x + 5y = -10
A.
(-3/2, 3)
B.
(-2, 3/2)
C.
(-5/2, 2)
D.
(2, 7/8)
Answer by richard1234(7193) (Show Source):
|
|
|