| 
 
 
| Question 404144:  CRAMER RULE, ELIMIATION OR SUBSTITUTION METHOD, AND MATRICES PRACTICE PROBLEMS
 
 
 1.   Solve the system using the elimination or substitution method. 5x - 2y = 2; -3x + y = -2
 
 
 A.
 (1, 1)
 
 
 
 B.
 (-1, -3/2)
 
 
 
 C.
 (2, 4)
 
 
 
 D.
 (-2, 4)
 
 
 
 
 
 
 
 2.   Solve the system using the elimination or substitution method. x + 4y + z = -6; 3x - 2y - z = -10; 3y + 2z = 4
 
 
 A.
 (3, 2, -4)
 
 
 
 B.
 (-3, -2, 5)
 
 
 
 C.
 (1, 0, -2)
 
 
 
 D.
 (-2, 4, -5)
 
 
 
 
 
 
 
 3.   Solve the system using matrices. x + 4y + 2z = -4; 2x - y - z = 10; 2x + 3y + 2z = 2
 
 
 A.
 (3, -2, -1)
 
 
 
 B.
 (4, -2, 0)
 
 
 
 C.
 (-2, 5, 3)
 
 
 
 D.
 (1, -1, 3)
 
 
 4. Given the cost function C(x) = 2700 + 31x and the revenue function R(x) = 49x, find the number of units that must be old to break even.
 
 
 A.
 150 units
 
 
 
 B.
 270 units
 
 
 
 C.
 220 units
 
 
 
 D.
 310 units
 
 
 
 
 
 
 
 5.   Solve the system using matrices. x - y = 1; -8x + 6y = 4
 
 
 A.
 (-5, -6)
 
 
 
 B.
 (2, 1)
 
 
 
 C.
 (-2, -1)
 
 
 
 D.
 (6, 5)
 
 
 
 
 
 
 
 6.   Solve the sysyem using Cramer's Rule. 2x - 3y = -13; 7x - 6y = -5
 
 
 A.
 (2, 3)
 
 
 
 B.
 (7, 9)
 
 
 
 C.
 (-5, -6)
 
 
 
 D.
 (-8, -1)
 
 
 
 
 
 
 
 7.   Solve the system using matrices. 2x - 8y = 12; x - 4y = -3
 
 
 A.
 (2, -1)
 
 
 
 B.
 (-3, 0)
 
 
 
 C.
 No Solution
 
 
 
 D.
 Infinitely many solutions
 
 
 
 
 
 
 
 8.   Solve the system using the elimination or substitution method. x + 2y - 3z = 9; -x + 3y - 2z = 1; 2x - 5y + 2z = 2
 
 
 A.
 (1, -3, 2)
 
 
 
 B.
 (0, 3, -2)
 
 
 
 C.
 (6, 3, 1)
 
 
 
 D.
 (3, 0, -2)
 
 
 
 
 
 
 9.   Solve the system using the elimination or substitution method. 14x - 7y = -7; 7x + y = 10
 
 
 A.
 (1, 3)
 
 
 
 B.
 (1, 1)
 
 
 
 C.
 (-1, -2)
 
 
 
 D.
 No solution
 
 
 
 
 
 
 10.   Solve the system using Cramer's rule. 2x + 8y = 11; 8x + 5y = -10
 
 
 A.
 (-3/2, 3)
 
 
 
 B.
 (-2, 3/2)
 
 
 
 C.
 (-5/2, 2)
 
 
 
 D.
 (2, 7/8)
 
 
 
 
 
 Answer by richard1234(7193)
      (Show Source): 
 | 
  
 | 
 |