|
Question 399952: (3x^4 + 11x^3 + 19x^2 - 16)divided by (3x + 5)
Answer by CharlesG2(834) (Show Source):
You can put this solution on YOUR website! (3x^4 + 11x^3 + 19x^2 - 16)divided by (3x + 5)
....................x^3 + 2x^2 + 3x - 5
3x + 5 --> 3x^4 + 11x^3 + 19x^2 + 0x - 16
...........3x^4 + 5x^3
...................6x^3 + 19x^2
...................6x^3 + 10x^2
...........................9x^2 + 0x
...........................9x^2 +15x
................................-15x - 16
................................-15x - 25
........................................9
answer is x^3 + 2x^2 + 3x - 5 + 9/(3x + 5)
check:
(3x + 5)(x^3 + 2x^2 + 3x - 5 + 9/(3x + 5))
(3x + 5)x^3 + (3x + 5)2x^2 + (3x + 5)3x - (3x + 5)5 + (3x + 5)9/(3x + 5)
3x^4 + 5x^3 + 6x^3 + 10x^2 + 9x^2 + 15x - 15x - 25 + 9
3x^4 + 11x^3 + 19x^2 - 16, yes
|
|
|
| |