SOLUTION: A box contains five red, three blue, and two white poker chips. Two are selected without replacement. Find the probability that both are the same color.

Algebra ->  Probability-and-statistics -> SOLUTION: A box contains five red, three blue, and two white poker chips. Two are selected without replacement. Find the probability that both are the same color.      Log On


   



Question 389744: A box contains five red, three blue, and two white poker chips. Two are selected without replacement. Find the probability that both are the same color.
Answer by MathLover1(20850) About Me  (Show Source):
You can put this solution on YOUR website!
There are 10-choose-2+=+45 possible draws of two chips.
There 5-choose-2+=10 ways to choose+2+red+chips.
There are 3-choose-2+ways=3 to pick 2+blue chips, and
2-choose-2=1 ways to pick 2+white chips.
Probability both chips are the same color is %2810%2B3%2B1%29%2F45+=+0.31111+=31...percent