SOLUTION: Question is asking - Write quadratic relation in vertex form from the information given: Zero at 1 and 5, minimum value of -12, and passes through (6,15)

Algebra ->  Rational-functions -> SOLUTION: Question is asking - Write quadratic relation in vertex form from the information given: Zero at 1 and 5, minimum value of -12, and passes through (6,15)      Log On


   



Question 389601: Question is asking - Write quadratic relation in vertex form from the information given: Zero at 1 and 5, minimum value of -12, and passes through (6,15)
Answer by scott8148(6628) About Me  (Show Source):
You can put this solution on YOUR website!
the axis of symmetry is midway between the zeros ___ x = 3

the vertex is on the axis of symmetry and is the minimum point ___ (3,-12)

the vertex form of the quadratic is ___ y = a(x - h)^2 + k , vertex at (h,k)

in this case ___ y = a(x - 3)^2 - 12

plug in the given point to find the value of "a" ___ 15 = a(6 - 3)^2 - 12 ___ 27 = 9a ___ a = 3

the relation is ___ y = 3(x - 3)^2 - 12