SOLUTION: Given: WX≅WZ; XW⊥XY; WZ⊥ZY Prove: WY bisects ∠XYZ Statement: 1. XW⊥XY; WZ⊥ZY (given) 2. ∠YXW and ∠WZY are right angles
Algebra
->
Geometry-proofs
-> SOLUTION: Given: WX≅WZ; XW⊥XY; WZ⊥ZY Prove: WY bisects ∠XYZ Statement: 1. XW⊥XY; WZ⊥ZY (given) 2. ∠YXW and ∠WZY are right angles
Log On
Geometry: Proofs in Geometry
Geometry
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Geometry proofs
Question 388115
:
Given: WX≅WZ; XW⊥XY; WZ⊥ZY
Prove: WY bisects ∠XYZ
Statement:
1. XW⊥XY; WZ⊥ZY (given)
2. ∠YXW and ∠WZY are right angles
3. WX≅WZ (given)
4. YW≅YW
5. ΔXYW≅ΔZYW (HL theorem)
6. ∠1≅∠2
7. m∠1=m∠2 (definition of congruent angles)
8. WY bisects ∠XYZ
Choose the correct reason for statement 6?
Answer by
jerryguo41(197)
(
Show Source
):
You can
put this solution on YOUR website!
CPCTC or Corresponding Parts of Congruent Triangles are Congruent