SOLUTION: Given: WX≅WZ; XW⊥XY; WZ⊥ZY Prove: WY bisects ∠XYZ Statement: 1. XW⊥XY; WZ⊥ZY (given) 2. ∠YXW and ∠WZY are right angles

Algebra ->  Geometry-proofs -> SOLUTION: Given: WX≅WZ; XW⊥XY; WZ⊥ZY Prove: WY bisects ∠XYZ Statement: 1. XW⊥XY; WZ⊥ZY (given) 2. ∠YXW and ∠WZY are right angles       Log On


   



Question 388114: Given: WX≅WZ; XW⊥XY; WZ⊥ZY
Prove: WY bisects ∠XYZ
Statement:
1. XW⊥XY; WZ⊥ZY (given)
2. ∠YXW and ∠WZY are right angles
3. WX≅WZ (given)
4. YW≅YW
5. ΔXYW≅ΔZYW (HL theorem)
6. ∠1≅∠2
7. m∠1=m∠2 (definition of congruent angles)
8. WY bisects ∠XYZ
Choose the correct reason for statement 4?

Answer by richard1234(7193) About Me  (Show Source):
You can put this solution on YOUR website!
YW = YW is pretty obvious, I believe it's called the reflexive property but I'm not 100% sure.