You can put this solution on YOUR website! Solve: log[2](3x+89)-log[2](x+8)=log[2](x+3)
log[2](3x+89)-log[2](x+8)=log[2](x+3)
=log[2](3x+89)-log[2](x+8)-log[2](x+3)=0
=log[2](3x+89)-(log[2](x+8)+log[2](x+3)=0
=log[2](3x+89)-(log[2](x+8)*(x+3)=0
log[2](3x+89)=(log[2](x+8)*(x+3)
3x+89=(x+8)*(x+3)
3x+89=x^2+11x+24
x^2+8x-65
Use following quadratic formula to solve with a=1, b=8, c=-65
x = (-8ħsqrt(8^2-4*1*-65))/2*1
= (-8ħsqrt(324)/2)
= (-8ħ13)/2
x = 5/2 or -21/2(reject,log of a negative number not valid)
ans: x = 5/2 = 2.5