SOLUTION: Determine whether the graphs of y=2x-6 and -4x=2y are parallel lines, perpendicular lines, or neither.

Algebra ->  Linear-equations -> SOLUTION: Determine whether the graphs of y=2x-6 and -4x=2y are parallel lines, perpendicular lines, or neither.      Log On


   



Question 381477: Determine whether the graphs of y=2x-6 and -4x=2y are parallel lines, perpendicular lines, or neither.
Answer by Jk22(389) About Me  (Show Source):
You can put this solution on YOUR website!
the line y=2x-6 can be seen as : (x,y)=(1,2)t+(0,-6), where t is a parameter, and (1,2) the vector describing the direction of the line

the 2nd equation is : y=-2x, or (x,y)=(1,-2)t

since both vector (1,2), (1,-2) are not co-linear, they are not parallel.

if we compute the dot product of both vector, we find (1,2)(1,-2)=1+4 different from 0, hence the lines are not perpendicular neither.