By the law of sines,




Let those three fractions equal to a constant k,






Then we have
VW = k*sin(U), UW = k*sin(V), UV = k*sin(W)
Draw altitude WX
VX = VW*cos(V) = k*sin(U)cos(V)
UX = UW*cos(U) = k*sin(V)cos(U)
UV = VX + UX = k*sin(U)cos(V) + k*sin(V)cos(U)
UV = k*sin(W)
k*sin(W) = k*sin(U)cos(V) + k*sin(V)cos(U)
sin(W) = sin(U)cos(V) + sin(V)cos(U)
W = 180° - (U+V)
sin[180°-(U+V)] = sin(U)cos(V) + sin(V)cos(U)
and since the sine of the supplement of an angle
equals the sine of the angle,
sin(U+V) = sin(U)cos(V) + sin(V)cos(U)
switch the factors in the last term
sin(U+V) = sin(U)cos(V) + cos(U)sin(V)
Edwin