Question 376016: 1. Determine the solutions for 2tan^2x-3secx=0 in the interval x belongd to
(-2pie, 2pie).
2. Graph the function y=-2cos(4(x+2pie/3)-3
3. Graph y=3sin(2(x+5pie/6)+1
Answer by Alan3354(69443) (Show Source):
You can put this solution on YOUR website! 1. Determine the solutions for 2tan^2x-3secx=0 in the interval x = -2pi, 2pi
It's the Greek letter pi, not the dessert, pie.
2tan^2x-3secx=0
2sin^2/cos^2 - 3/cos = 0
2sin^2 - 3cos = 0
2(1-cos^2) - 3cos = 0
2cos^2 + 3cos - 2 = 0
(2cos - 1)*(cos + 2) = 0
cos = -2 Not a real number, discard
cos(x) = 1/2
x = pi/3, -pi/3, 5pi/3, -5pi/3
-----------------------
2. Graph the function y=-2cos(4(x+2pie/3)-3
----------
dl the FREE graph software at
http://www.padowan.dk.com
------------
3. Graph y=3sin(2(x+5pie/6)+1
|
|
|