| 
 
 
| Question 373128:  How would you go about doing (1+cosx+sinx)/(1+cosx-sinx)=secx+tanx ?
 
 Answer by CharlesG2(834)
      (Show Source): 
You can put this solution on YOUR website! How would you go about doing (1+cosx+sinx)/(1+cosx-sinx)=secx+tanx ? 
 sohcahtoa
 sin = opp/hyp, cos = adj/hyp, tan = opp/adj
 sin/cos = opp/hyp * hyp/adj = opp/adj
 tan = sin/cos
 sec = 1/cos
 sin^2(x)=(sinx)^2, cos^2(x) = (cosx)^2
 trigonometric identity: (sinx)^2 + (cosx)^2 = 1
 
 (1 + cosx + sinx)/(1 + cosx - sinx) = secx + tanx
 put all terms in terms of sin and cos:
 (1 + cosx + sinx)/(1 + cosx - sinx) = 1/cosx + sinx/cosx
 (1 + cosx + sinx)/(1 + cosx - sinx) = (1 + sinx)/cosx
 cross-multiply:
 cosx(1 + cosx + sinx) = (1 + sinx)(1 + cosx - sinx)
 distribute:
 cosx + (cosx)^2 + sinxcosx = 1 + cosx - sinx + sinx + sinxcosx - (sinx)^2
 sinx terms on right cancel out
 cosx + (cosx)^2 + sinxcosx = 1 + cosx + sinxcosx - (sinx)^2
 cosx terms and sinxcosx terms cancel out
 (cosx)^2 = 1 - (sinx)^2
 (sinx)^2 + (cosx)^2 = 1, done
 
 
 | 
  
 | 
 |