SOLUTION: 1. Find bases for the following subspaces of F5:
W1 = {(a1, a2, a3, a4, a5) Î F5: a1 – a3 – a4 = 0} and
W2 = {(a1, a2, a3, a4, a5) Î F5: a2 = a3 = a4 and a1 + a5 = 0}.
What are
Algebra ->
College
-> Linear Algebra
-> SOLUTION: 1. Find bases for the following subspaces of F5:
W1 = {(a1, a2, a3, a4, a5) Î F5: a1 – a3 – a4 = 0} and
W2 = {(a1, a2, a3, a4, a5) Î F5: a2 = a3 = a4 and a1 + a5 = 0}.
What are
Log On
Question 3703: 1. Find bases for the following subspaces of F5:
W1 = {(a1, a2, a3, a4, a5) Î F5: a1 – a3 – a4 = 0} and
W2 = {(a1, a2, a3, a4, a5) Î F5: a2 = a3 = a4 and a1 + a5 = 0}.
What are the dimensions of W1 and W2?
2. The set of all upper triangular n x n matrices is a subspace W of
M n x n (F). Find a basis for W and determine its dimension.