SOLUTION: 1. Find bases for the following subspaces of F5: W1 = {(a1, a2, a3, a4, a5) Î F5: a1 – a3 – a4 = 0} and W2 = {(a1, a2, a3, a4, a5) Î F5: a2 = a3 = a4 and a1 + a5 = 0}. What are

Algebra ->  College  -> Linear Algebra -> SOLUTION: 1. Find bases for the following subspaces of F5: W1 = {(a1, a2, a3, a4, a5) Î F5: a1 – a3 – a4 = 0} and W2 = {(a1, a2, a3, a4, a5) Î F5: a2 = a3 = a4 and a1 + a5 = 0}. What are       Log On


   



Question 3703: 1. Find bases for the following subspaces of F5:
W1 = {(a1, a2, a3, a4, a5) Î F5: a1 – a3 – a4 = 0} and
W2 = {(a1, a2, a3, a4, a5) Î F5: a2 = a3 = a4 and a1 + a5 = 0}.
What are the dimensions of W1 and W2?
2. The set of all upper triangular n x n matrices is a subspace W of
M n x n (F). Find a basis for W and determine its dimension.

Answer by longjonsilver(2297) About Me  (Show Source):
You can put this solution on YOUR website!
a group of numbers/entities etc...

the set of all even numbers
the set of numbers divisible by 7
the set of all integers etc etc

Jon