| 
 
 
 
Question 361896:  Hi,
 
Just wondering if you could show me the steps of how to find all roots of the equation z^5 = i, i.e. find the 5 values of i^1/5
 
Thankyou,
 
franco 
 Answer by CharlesG2(834)      (Show Source): 
You can  put this solution on YOUR website! "Hi,
 
Just wondering if you could show me the steps of how to find all roots of the equation z^5 = i, i.e. find the 5 values of i^1/5
 
Thankyou,
 
franco"
 
 
z^5 = i 
z = i^(1/5), find the 5 roots 
360/5 = 72, so roots will be 72 degrees apart when plotted on complex plane 
converting i to polar form 
polar form is r(cos(t) + isin(t)) 
r = sqrt(0^2 + 1^2) = sqrt(1^2) = 1 
t (angle theta) = 90 degrees 
cos 90 = 0, sin 90 = 1 
polar form of i is i 
using de Moivre's formula 
[r * (cost + isint)]^n = r^n * (cos(nt) + isin(nt)) 
r^(1/5) = 1^(1/5) = 1, n = 1/5, t = 90 + 360k 
z^(1/5) = cos(1/5 * (90 + 360k)) + isin(1/5 * (90 + 360k))) 
k from 0 to 4 
k = 0 
cos(1/5 * 90) + isin(1/5 * 90) 
cos(18) + isin(18) 
k = 1 
cos(1/5 * 450) + isin(1/5 * 450) 
cos(90) + isin(90) 
i 
k = 2 
cos(1/5 * 810) + isin(1/5 * 810) 
cos(162) + isin(162) 
k = 3 
cos(1/5 * 1170) + isin(1/5 * 1170) 
cos(234) + isin(234) 
k = 4 
cos(1/5 * 1530) + isin(1530) 
cos(306) + isin(306)
 
 
checking (cos(18) + isin(18))^5 
use (a + b)^5 = a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5 
from pascal's triangle 
plug in cos(18) for a, and isin(18) for b 
cos(18)^5 + 5*cos(18)^4*(isin(18)) + 10*cos(18)^3*(isin(18))^2 + 10*cos(18)^2*(isin(18))^3 + 5*cos(18)*(isin(18))^4 + (isin(18))^5 
i = i, i^2 = -1, i^3 = -i, i^4 = 1, i^5 = i 
cos(18)^5 + 5*i*cos(18)^4*sin(18) - 10*cos(18)^3*sin(18)^2 - 10*icos(18)^2*sin(18)^3 + 5*cos(18)*sin(18)^4 + isin(18)^5 
cos(18)^5 - 10cos(18)^3*sin(18)^2 + 5cos(18)sin(18)^4 = 
.7781 - .8215 + .0434 = 0 (rounded these to 4 digits) 
5*i*cos(18)^4*sin(18) - 10*icos(18)^2*sin(18)^3 + isin(18)^5 = 
1.2641i - .2669i + .0028i = i (rounded these to 4 digits) 
so (cos(18) + isin(18))^5 = i
 
 
 
 
 
 
 
 
  | 
 
  
 
 |   
 
 |   
 |  |