SOLUTION: A ball is thrown vertically upward. After t seconds, its height h (in feet) is given by the function h(t)= 56t-16tē . What is the maximum height that the ball will reach?
Do n
Algebra ->
Customizable Word Problem Solvers
-> Mixtures
-> SOLUTION: A ball is thrown vertically upward. After t seconds, its height h (in feet) is given by the function h(t)= 56t-16tē . What is the maximum height that the ball will reach?
Do n
Log On
Question 359046: A ball is thrown vertically upward. After t seconds, its height h (in feet) is given by the function h(t)= 56t-16tē . What is the maximum height that the ball will reach?
Do not round your answer.
*here was my approach
i factored the equation getting:
= 4t(-4t+14)
= 4t = 0 -4t+14 = 0
t = 0 -4t = -14
t = 7/2
The answer i came up with was 3.5ft, is this correct?
You can put this solution on YOUR website! No, that's not correct.
You're solving for when . when and and and
Using a symmetry argument, then the maximum height must occur when time is between these two values,
Find ft
.
.
.
You could also have converted the height equation to vertex form, since the maximum value occurs at the vertex.
I use instead of here because (,) is traditionally the vertex.
Complete the square.
So then the maximum value of occurs at
.
.
.